Instructional Strategies Observation

This observation compares two very different types of instruction instruction strategies between STEM related topics. The first strategy is project- and inquiry-based instruction the other is a game to demonstrate a concept. In the first class, a class titled “The Physics of Flight,” students are tasked with creating a protection system for a payload on a bottle rocket they will launch at the end of the week. Students are provided a budget, materials and a critical friend who must approve the design before the build. Students must use their knowledge of drag, friction, air pressure and mass (topics of physics) to design their payload protection system to minimize damage. Students who are careful with their design and focus on the prior knowledge built more robust systems.

The project is a long term project where students will revise their plans and rebuild their payload protection system many times as they learn more about the physics required for flying and space. What I like about this project and instructional strategy is that it is very real world. Students have to work within a budget, they need to be creative, their plans need to be approved by a critical friend and finally they can actually build and test their end product and have the opportunity to revise their original plans. I asked a student about what they would do differently, they mentioned that they would not have used such heavy material to protect their payload because the mass is difficult to slow down when the object is falling. They need a lighter protection system to be slower. I think these students are really learning about the concepts of physics in a real world environment. Some students were confident in their protection systems and the teacher didn’t challenge their thinking much after they took their mind off the task. If I were to provide feedback I would encourage this teacher to talk one on one with the students who claimed they were done and ask them about how their learning changed design elements on their product. This would re-engage these students who felt they already knew how to do the activity well. I think that mathematical modeling is one of the most useful applications of math, so I may use the project based strategy to provide a project for my students to apply their math knowledge to the real world.

The other instructional strategy that I observed was a game to unpack a scientific concept. The students were studying the carbon cycle and the teacher wanted to emphasize that particles of carbon get stuck in different areas. For instance, carbon that forms oil will be stuck in the ground for a long time until it is drilled up and then moved through the air as oil emissions. Students played a game were each student was a carbon molecule and they started evenly distributed. Students would roll dice and read a legend to determine their fate as a carbon. Some tabled became very full while others were less full because carbon stays in certain forms longer. Students recorded their fate and then at the end of the game the teacher had students discuss what happened to their molecule. I think this was beneficial since it was an activity where students could move around the classroom and see/feel what a carbon would be in the larger scheme of the carbon cycle. I especially liked that the class debriefed the activity so that those student who could not make the conclusion about the activity could be clued into what learning was supposed to take place. This type of activity could implemented in a statistics unit where randomness can be visualized.

Between these two instruction strategies, I think they were both effective because they had clear goal for the students and were well planned out. Students were able to articulate the goals of the activity and the activity was differentiated so learning could be achieved despite different learning styles. The take away from these observations was that I need to incorporate more movement into my classroom and differentiate instruction with intentional activities for students.

Advertisements

One thought on “Instructional Strategies Observation

  1. I like the way that you contrasted two very different activities for learning. Both allow for student participation and activity and both had a summary component. I also like your interest in finding active ways to teach math. Can you think of a topic or two that you could teach with an active method?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s